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Abstract. We investigate the solitaric excitations in the easy-plane compressible 
ferromsgaetic Hekenberg chain using I) coherent states foormdism It ia shown that 
the existence of out-d-eaey-plane excursions is compulsory for the excitations of the 
elastic modes. The shaprj of the S O ~ ~ M  M shown to be s t r o d y  dewdent  on the 
dues of the parametas of the model. 

Model substances representing magnetic chains have been investigated in detail by 
measuring neutron scattering cross sections [I] and by Everal other experimental 
techniques. The results reveal the presence of non-linear excitations of the magnetic 
degrees of freedom which are as elementary as the usual linear modes. A particular 
system which theories and experiments have studied intensely is the easy-plane linear- 
chain magnet CsNiF, in which the interactions between the spins are ferromagnetic; 
to compare theory and experiments many approximations has been performed, in 
particular that involving a sineGordon mapping [2]; of course this makes comparisons 
restricted and induces to consider more complex theoretical models, as those involving 
new and diverse degrees of freedom; for example models bringing magnetic and elastic 
excitations. The models are mainly b,ased on the Heisenberg Hamiltonian of a chain of 
magnetic ions distributed along an axis and acted by strong anisotropies along some 
predetermined directions. Coupled excitations may then exist on different ground 
states. 

The existence of coupled magnetic and elastic non-linear modes in the compressible 
ferromagnetic Heisenberg chain has been extensively demonstrated for the case of 
uniaxial anisotropy [3]. 

Our interest is to investigate the existence of these coupled excitations in the com- 
pressible ferromagnetic Reisenberg chain with easy-plane anisotropy in the presence 
of an external magnetic field parallel to that plane. The Hamiltonian appropriate for 
this system is 

where Xmag represents the magnetic degrees of freedom and has the form 
31 = Xmw + 'Hph +%Hint (1) 

N N N 

= -J S, Sn+, + D c ( S i ) z  - h Sz (2) 
n,6=*o n=t n=l 
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with S, the spin on site n and J > 0; D > 0, h E g p B X .  

R F e m r  and J Fozo 

The elastic modes are represented by 'Mph 

where the pn are the momenta and qn the longitudinal displacements from the equi- 
librium positions. m is the mass of the ions and k is the elastic constant. 

The term 'Mint represents the interaction between magnetic and elastic modes; to 
first order this term takes the form 

where A E BJ/Bz is the magnetostriction parameter and a represents the lattice 
spacing. 

Proceeding as in [3] we take the continuous form of the Hamiltonian (1) 

Xmag = - 1 J d r  (.+?~(z)S-"(Z) + S - ( Z ) ~ ~ " ( Z )  

J J 2 

'Mph = ' J  dr(dz))2 t k/dz(d(z))z 

( 5 )  

(6) 

1 

2 

+ D  dz(S'(z))*-h dzSz(z)--NJS2 

+ S-(z)St'(z) + S*(z)S"(z)) - AS2jdzq"(z)  

(7) 

Next we transform this Hamiltonian, taking 

1 
p = i  mw0/2(ct-c) q=-(et+,) d- @GI 

where wo = m;;; and, following 141, making use of the Schwinger representation 

St(z) = a'(z)b(z) 

s-(z) = bt(z)a(z) 

Sz(z) = $[at(z)a(z) - bt(z)b(z)] 

where at(z), a(.), b t ( z ) ,  b ( z )  are simple harmonic oscillator bosonic operators. 

the following three equations 
In the Heisenberg picture the dynamic of the above operators is coupled through 

ia(z,t) = [a(z,f),'M] ib(z,t) = [b(z,t),31j ii(z,t) = [c (z , t ) ,R]  (9) 

where the dot stands for B/Bt  and 6 = 1. 



+ afbt'b'a + at'btba' + 4(atat'a'a + btbt'b'b) 

+ 3(at'a' + at," + bt'b' + btb") ] (12) 

We now take the classical limit of the spin variable in order to define coherent 
states that are eigenstates of the bosonic operators a, b and c. On each point of the 
continuous chain we define a coherent state 

14.) P ( z ) r ( z ) )  = l4z))lP(.))lr(.)) (13) 

with 
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As the states I a P y )  are eigenvectors of the operators a ,  b,c with eigenvalues a p r ,  
respectively, i t  is passible to write down the coupled differential equations for this 
eigenvalues through bracketing the equations for the bosonic operators into and arbi- 
trary coherent state. Note also that the meaning of the average of a derivative in our 
coherent state formalism is 

(.I$.(+) = (. I$p(F+AO - .(€)I14 
= lim (a(< + A 0  - 40)(44 

B 
ix 

A(-0 

(17) = -a. 

So we obtain 

where we have made use of the following kinematics conditions associated with the 
Schwinger transformation: 
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where 8,(z,t) and OR(z,t)  are real variables. 

following coupled non-linear differential equations: 

(i + S)Jp" - &Jp(O;' + e'') + iJS(0;' - e'') - 1 l p  (e R + 6,) 

From these equations we can form, after separating real and imaginary parts, the 

+ ~JSP($ - e:)' + s(iR -6 , )  - [2(: + S ) D  + f h c o ~ ( 8 ~  - 
+ ;A (q')p' - x (q")p = 0 (23) 

(24) 
S J  I1 - (8@ + 8 3  + ;A(q')[(e; - 8 3  - (1/2s)(e; + e',)p] = o 

JpV; - e;) - J (e ;  + e'') + JP(B; - e:) - 2x(q3[(eR +e;) - +(e'R -e:)p] 

= o  (25) 

(26) 

(27) 

- 2p - :Jp'($ + 8;) + 2S[($ + S) (6 - 0:) - (h/J)sin(Bg - e,)] 

2k 
I m j  = - Rey" 

-0 

[see'; + e:) - (e; - 8 3 '  - (8; - e:)p]. 3x Re j = wo Imy + 

Let US consider first the sineGordon limit, i.e. p = 0; in this case equations (23), 
(24) and (25) are 

8d 
3J4I 

81s . 6 
11J 11 

(8; +e''), = -- 

4'' - -sin 4 + --X(q')+' = 0 

(d )  = 0 

and then no elastic mode is excited when the out of plane excursions are omitted from 
the theory. We have only sineGordon magnetic kinks. 

To first order in p we get from (25) and (28) 

Substituting this in (27) and then combining with (26) results in 

Assuming permanent form solutions for the magnetic degrees of freedom, i.e., 
taking 4 ( z , t )  = d ( z - u t ) ,  the last two terms cancel each other and 44'(4')-a becomes 
-U and the above equation takes the form 
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On the other hand, taking also q(r,t)  = q(z-uet) and defining € I - ut we get, 
after straightforward calculations wing equations (U), (19) and (23), the following 
equation for the out-of-plane excursions of the spins: 

= Q(€) (34) 

where the derivatives are with respect to E and we use the time as a parameter; we 
also define 

2uz 
3.7s 

J 
F(E) = 5 (1 - $"(E) + - - 2 0  

3J 
1 35 L(5) = [h cos $(€) - 50 - -&'*(E) + 

where CO = (3/8S t 1) and $(I) = 

form 

(1 - 2 sech2( a E ) )  
Equation (33) is a typical wave equation that admits harmonic solutions of the 

(n(r, t))  = qo exp[i(koz - 4 1  (40) 

with 

=(u-ve)k0 u - u , > O  

Equation (41) links the phase velocity U, of the elastic harmonic wave with the velocity 
U of the permanent form pulse representing p. 
We proceed replacing this harmonic solution in equation (34) and performing a 

numerical integration taking J = 1 and S = 1. For some values of the parameters 
we have found solitary excursions out of the easy plane; one for each 27~ sineGordon 
rotation around the easy axis. The initial conditions used were p(-CO) =/( -CO) = 0 
and we want the final conditions p(+o3) = p'(io3) = 0. Regarding the velocity of the 
solitons there are two limiting cases in which these final conditions are not satisfied. 
First is the case of low U; here the solutions correspond to very large p that can even 
be divergent. In figure 1 we see that the role of X and U is to decrease p. Using 
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Figure 1. Out-of-easy-phe excursion p(( , t  = 1) for two values of the velocity and 
two value of A; c w e  A, v = 5. X = 0.001; curv~ B, v = 13, X = 0.001; curve C, 
v = 5, X = 30; c w e  D, v = 13, X = 30. The parm&ers are: h = 0.1, d I D/J=0.2,  
m = k = 20. 

'In. 0.03 
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Figute 2. Out-of-easy-plane excursion p((, i  = 1) for two d u e s  of the velocity 
( U )  v = 30; ( 6 )  v = 60. The parameters are: X = 30 h = 0.1, d E D / J  = 0.2, 
m = k = 20. 

t 0 20 40 60 80 100 

this fact we get the small amplitude soliton presented in figure Z(a). In figure 3 we 
show the approximate lower value of the velocity below which the soliton amplitude is 
extremely large. The second limiting case correspond to larger values of v up to values 
above which the excursions diverge in high frequency back an forward oscillations as 
can be seen in figure 2(b) ;  this effect has proved to be enhanced by the presence of 
the lattice harmonic oscillations. 

We consider now as solution of equation (33) the pulse found in references [3] 
and [5] for the compressible ferromagnetic Heisenberg chain with uniaxial anisotropy 

(q(C,)) = Po tanh(toE,) sech(kote) (42) 

where (e = z t vet. 
Using this changing-sign pulse in (34) and performing a numerical integration 

we studied the effects of the lattice deformation on a traveling magnetic soliton. The 
moduli of the velocities are related by the equation (41) and wesupposed the magnetic 
soliton traveling from the kAt aha the lattice deformation from the right. The centres 
coincide at t = 0. In figure 4 we present p for different times showing the effect of 
the collision with the elastic pulse. The magnetic field h modifies the deformation 
of the magnetic soliton due to the collision at t = 0, in the form shown in figure 5; 
we observe that the field makes the magnetic soliton less perturbable by the elastic 
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Figure 3. Dependence on X and h of the minimum vdue of the vclocily in order to  
have low amplitude eolitcns with p(*tm) = 0 and p ' ( 5 w )  = 0. 

Figure 4. An out-of-easy-plane e x c w b n  p(E,:)  coming from the right encountem 
an elastic pulse coming from the left. The parsmeters are: X I 20, h = 0.01, 
d E D l 3  = 0.2, m = k =20 and v = 3. 

pulse. Finally, we present in figure 6 the dependeuce of the deformation, at t = 0, 
on the magnetostrictive parameter A; as X increases the deformation becomes more 
pronounced and irregular. 

According to the results presented above we can recognize the existence of coupled 
magnetic and elastic non-linear excitations in the compressible Beisenberg chain with 
p h m  anisotropy. These modes are however not possible in the absence of out-of-plane 
excursions of the spins. Our analysis considers two situations that may be improved: 
it is a first order theory on the out-of-plane excursions and it considers only harmonic 
terms in the lattice Hamiltonian. To include nonharmonic elastic terms and take 
higher order terms in p seems to be the next step to be considered. The irregular 
oscillations observed for a large coupling between the magnetic and elastic modes 
suggest the idea of analyzing a discrete chain introducing a mapping and investigate 
further the spectral properties of the corresponding stochastic structures. Also the 
c a e  of a eompressible antiferromagnetic chain may he treatable with this formalism 
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Figure 5. Effects of the i n - p h e  extemal field h on the out-d-easy-plane ex-ion 
p ( & t  = 0). The parmetem M: X = 20, d I DIJ = 0.2, m = k = 20 and v = 3. 

Figure 6. ERects of the mapetostrictive parameter X on the out-of-easy-plane 
excursion p(&t = 0). The parameters M: h = 0.01, d E D / J  = 0.2, m k = 20 
and v = 3. 

to see the effects of the compressibility on the crossover fields [6]. 
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